Function reference
-
ggpp
ggpp-package
- ggpp: Grammar Extensions to 'ggplot2'
Scales
Scales control de mapping of values in data to values of an aesthetic, or the propeerties of the plot’s graphic elements.
-
scale_npcx_continuous()
scale_npcy_continuous()
- Position scales for continuous data (npcx & npcy)
-
compute_npcx()
compute_npcy()
as_npcx()
as_npcy()
compute_npc()
as_npc()
- Compute NPC coordinates
Geoms
Geoms, short for geometric objects, describe the type of plot you will produce. They add a plot layer containing graphic elements representing values in the data,
-
annotate()
- Annotations supporting NPC
-
geom_label_npc()
geom_text_npc()
- Text with Normalised Parent Coordinates
-
geom_label_s()
geom_text_s()
- Linked Text
-
geom_label_pairwise()
geom_text_pairwise()
- Label pairwise comparisons
-
geom_point_s()
- Points linked by a segment
-
geom_x_margin_point()
geom_y_margin_point()
- Reference points on the margins
-
geom_x_margin_arrow()
geom_y_margin_arrow()
- Reference arrows on the margins
-
geom_x_margin_grob()
geom_y_margin_grob()
- Add Grobs on the margins
-
geom_quadrant_lines()
geom_vhlines()
- Reference lines: horizontal plus vertical, and quadrants
-
geom_plot()
geom_plot_npc()
- Inset plots
-
geom_grob()
geom_grob_npc()
- Inset graphical objects
-
geom_table()
geom_table_npc()
- Inset tables
-
ttheme_gtdefault()
ttheme_gtminimal()
ttheme_gtbw()
ttheme_gtplain()
ttheme_gtdark()
ttheme_gtlight()
ttheme_gtsimple()
ttheme_gtstripes()
- Table themes
-
ttheme_set()
- Set default table theme
Statistics
It is often useful to summarize data before plotting, e.g., fiting models or computing means, or modifying the data in some other way.
-
stat_dens1d_filter()
stat_dens1d_filter_g()
- Filter observations by local 1D density
-
stat_dens1d_labels()
- Replace labels in data based on 1D density
-
stat_dens2d_filter()
stat_dens2d_filter_g()
- Filter observations by local 2D density
-
stat_dens2d_labels()
- Replace labels in data based on 2D density
-
stat_quadrant_counts()
- Number of observations in quadrants
-
stat_panel_counts()
stat_group_counts()
- Number of observations in a plot panel
-
stat_fmt_tb()
- Select and slice a tibble nested in
data
-
stat_apply_group()
stat_summary_xy()
stat_centroid()
- Apply a function to x or y values
-
stat_functions()
- Draw functions as curves
Positions
It is often useful to displace plot elements away from their original positions to obtain stacked, side-by-side or non-overlapping plot elements.
-
position_nudge_keep()
- Nudge points a fixed distance
-
position_nudge_to()
- Nudge labels to new positions
-
position_nudge_center()
position_nudge_centre()
- Nudge labels away from a central point
-
position_nudge_line()
- Nudge labels away from a line
-
position_dodgenudge()
position_dodge_keep()
position_dodge2_keep()
position_dodge2nudge()
- Combined positions dodge and nudge
-
position_stacknudge()
position_fillnudge()
position_stack_keep()
position_fill_keep()
position_stack_minmax()
- Combined positions stack and nudge
-
position_jitternudge()
position_jitter_keep()
- Combined positions jitter and nudge
-
ggplot(<ts>)
ggplot(<xts>)
- Create a new ggplot plot from time series data
-
dark_or_light()
- Chose between dark and light color
-
try_data_frame()
try_tibble()
- Convert an R object into a tibble
-
wrap_labels()
- Wrap character strings in a vector
-
birch.df
birch_dw.df
- Birch seedlings' size
-
ivy.df
- Ivy photosynthesis light response
-
quadrant_example.df
- Gene expression data
-
volcano_example.df
- Gene expression data
-
weather_18_june_2019.df
- Weather data