Gives values for GPAS BSWF (Micheletti's formulation) as a function of wavelength
Source:R/gen.m.q.fun.r
GEN_M_q_fun.Rd
This function gives a set of numeric multipliers that can be used as a weight to calculate effective doses and irradiances. The BSWF is normalized at 300 nm.
Value
a numeric array of the same length as w.length
with values for
the BSWF normalized as in the original source. The returned values are
based on quantum effectiveness units.
Note
In the original publication [2] describing the formulation, the long-end wavelength boundary is not specified, but 313.3 nm is usually used. The equation is coded here with the limit at 342 nm as at longer wavelengths the values increase with increasing wavelength. The effect on the RAF and doses of changing this boundary ican be substantial, and has been analysed by Micheletti et al. [3].
References
[1]Caldwell, M. M. (1971) Solar UV irradiation and the growth and development of higher plants. In Giese, A. C. (Ed.) Photophysiology, Academic Press, 1971, 6, 131-177
[2] Micheletti, M. I. and R. D. Piacentini (2002) Irradiancia espetral solar UV-B y su relación con la efectividad de daño biológico a las plantas. ANALES AFA, 13, 242-248
[3] Micheletti, M. I.; Piacentini, R. D. & Madronich, S. (2003) Sensitivity of Biologically Active UV Radiation to Stratospheric Ozone Changes: Effects of Action Spectrum Shape and Wavelength Range Photochemistry and Photobiology, 78, 456-461
See also
Other BSWF functions:
CH4_e_fun()
,
CH4_q_fun()
,
CIE_e_fun()
,
CIE_q_fun()
,
DNA_GM_q_fun()
,
DNA_P_q_fun()
,
FLAV_q_fun()
,
GEN_G_q_fun()
,
GEN_T_q_fun()
,
ICNIRP_e_fun()
,
PG_q_fun()
Examples
GEN_M_q_fun(293:400)
#> [1] 1.91007157 1.76373703 1.62292847 1.48757804 1.35761784 1.23298001
#> [7] 1.11359669 0.99940000 0.89032207 0.78629503 0.68725100 0.59312212
#> [13] 0.50384052 0.41933833 0.33954767 0.26440068 0.19382948 0.12776620
#> [19] 0.06614297 0.00889193 0.00000000 0.00000000 0.00000000 0.00000000
#> [25] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
#> [31] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
#> [37] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
#> [43] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
#> [49] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
#> [55] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
#> [61] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
#> [67] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
#> [73] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
#> [79] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
#> [85] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
#> [91] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
#> [97] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
#> [103] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000